
Calibration of the distance traveled and steering sensors

distance counts angle counts
Try 1 25.25 -121 139 97
Try 2 25.75 -122 146 96
Try 3 25.5 -121 146 97
Try 4 25.5 -122 149 97
Try 5 25.5 -121 151 96
Try 6 26 -124 152 96
Try 7 25.75 -122 153 96

Total 179.25 -853 1036 675

Counts per Inch -4.758717 Counts per degree 0.651544

To use the calibration measure the distance the robot will travel and multiple
by the counts per inch. This gives the number of counts that must be
recorded to travel that distance. The count value is then used in a loop
such as Wait Until. When the Wait Until loop reaches the stated
counts the motor can be directed to stop or the robot can be directed
to do some other function.

Similarly for the angle calibration. The angle the robot is wished to turn
through is multiplied by the counts per degree. That count value is also
used in Wait Until loops, or similar, until the desired angle is reached.

Procedure: For each sensor a small program was written that
either travels a distance or turns for a specific amount of time, 2 or 5 seconds.
For each trial the distance traveled or angle turned is measured and the
count valuen is displayed on the RCX viewport. Several trials were done and
the average counts per inch or degree was calculated.

Rotation sensor used
to measure distance

traveled in inches

Touch sensor used
to measure angles

in degrees

program test_distance {

#include <RCX2.h>
#include <RCX2MLT.h>
#include <RCX2Sounds.h>
#include <RCX2Def.h>
sensor rotation3 on 3
rotation3 is rotation as angle

main {
ext InterfaceType "kFreestyle"
rcx_ClearTimers
bbs_GlobalReset([A B C])
try {

rcx_Calibrate(4,4)
clear Rotation3
power [C] 8
direction [C] []
on [C] for 200
display rotation3
stop tasks

} retry on fail
}

}

program test_rotation {

#include <RCX2.h>
#include <RCX2MLT.h>
#include <RCX2Sounds.h>
#include <RCX2Def.h>
sensor touch2 on 2
touch2 is switch as boolean
event tPress_touch2EventPress when touch2.pressed

main {
ext InterfaceType "kFreestyle"
rcx_ClearTimers
bbs_GlobalReset([A B C])
start TouchWatcher0
rcx_Priority(8)
trigger tPress_touch2EventPress
try {

counter1 = 0
direction [B] []
on [B] for 500
display counter1:1
stop tasks

} retry on fail
}

watcher TouchWatcher0 monitor tPress_touch2EventPress
{

rcx_Priority(3)
try {

counter1 += 10
} restart on fail

} restart on event
}

