 Q. Why are zinc oxide nanoparticles used in sunscreen? a. absorb harmful UV b. make it waterproof c. hide skin blemishes A. a – absorb UV 	 Q. In Lab-on-a-chip a sample travels down tiny channels where nanosized components and sensors a. identify specific molecules that warn of illness b. deliver targeted drugs c. kill cancer cells A. a 	 Benefits of targeted drug delivery include: a. Reduce toxicity, side-effects, cost b. Deliver drugs when needed c. Deliver drugs where needed d. All of the above A: d – all of the above 	True or False A lab-on-a-chip miniaturizes all the steps needed to process a medical sample and detect disease. Answer: True	Anticipated benefits of nanotechnology growing organ and tissue replacements include: a. reduce waiting time b. no shortages c. less chance of organ rejection d. all of the above A. d - all of the above	True or False In Nanoshell-Assisted Tumor Ablation nanoshells form a barrier that stops the growth of tumors. False. Nanoshells attach to cancer cells forming a target for lasers to kill the cancer.
Why are scientists at Oxford University studying how the tails - or 'flagella' - of some bacteria work – to make A. a new drill B. a nanorobot rotor C. artificial hair implants. <i>Answer: B</i>	This recent application of nanotechnology is glass coated in highly activated titanium dioxide, to be water repelling, antibacterial, and to catalytically destroy chemical agents. a. safety glasses b. self-cleaning window c. drinking glasses A. b self-cleaning windows	Why are scientists researching adding cerium oxide to diesel fuel? a. to reduce rusting in gas tanks b. to improve fuel economy by reducing the degradation of fuel consumption over time c. to increase the price of crude oil A. b	A process for making ceramic and glass materials, involving the transition from a liquid 'sol' phase to a solid 'gel' phase is called a: a. phase transition process b. gelatin process c. sol-gel process d. all of the above A. c	Self-assembly is one way for: a. bottom-up fabrication b. top-down fabrication c. top-up fabrication d. top-down fabrication A: a bottom-up	SEM stand for a. self-assembly electronic molecules b. scanning electron microscope c. smaller-Electro- Mechanical <i>Answer: B</i>
A scanning electron microscope makes pictures by moving a beam of focused across an object and reading the scattered electrons. a. electrons b. protons c. photons (light) A: a electrons	 A nanocoating used instead of thicker paint on aircraft improves: a. how high it can go. b. how fast it can go. c. fuel consumption since it decreases weight. A: c – lighter planes 	Which properties of Carbon Nanotubes (CNT) make them candidates for efficient, long- lasting emitters in flat screens? a. strength and sharpness b. conductivity and inertness c. all of above A. c- all of above	True or False Researchers think nanospheres will be more durable than current solid lubricants because of their controlled shape. <i>True</i>	True or False One possible application of nano- scaled magnetic devices is data storage. <i>True</i>	True or False Although ceramics are hard, brittle and difficult to machine, at nanoscales, ceramics become more plastic (ductile). <i>True</i>
Energy efficiency results from: a. improved insulation systems b. efficient lighting c. efficient combustion systems d. lighter and stronger materials in the transportation sector e. all of the above Answer E	Nanofiltration uses nanoporous membranes with pores smaller than a. 10 nanometers b. 10 centimeters c. 10 meters <i>A: a – 10 nm</i>	Ultrafiltration uses membranes with pores between: a. 10 and 100 nm b. 10 and 100 cm c. 10 and 100 m <i>A: a 10 and 100</i> <i>nanometers</i>	To remove heavy metal contaminants from waste water by magnetic separation techniques uses what? a. quantum dots b. carbon nanotubes C. magnetic nanoparticles A: c	Spintronic devices for high density hard drive use the material property of a. tensile strength b. light emission c. electron spin d. mass <i>A. c. electron spin</i>	Optoelectronic devices for communications are superior to electrical devices in a. information loss b. bandwidth c. capacity d. both b and c <i>A: d</i>

Which two of the following are examples of optoelectronic devices: a. photonic crystals b. quantum dots c. nanopourous membranes d. Copper-clad aluminum wire <i>A: a and b</i>	Researchers at the Institute for Soldier Nanotechnologies seek cloth that changes color on command so that soldiers are: a. camouflaged b. fashionable c. color coded by team A. camouflaged	 Weaving radio communications materials directly into the uniform's fabric provides soldiers with a. Electro-massages b. Flexibility and lighter loads c. Ability to pick up more cable stations A. b 	Researchers at the Institute for Soldier Nanotechnologies seek improvements for: a. fashion and durability b. color-coordinated battlefields for satellite surveillance c. protection and survivability A. c	Researchers at the Institute for Soldier Nanotechnologies want to reduce the weight of an in-field soldier's gear, now a. 10 pounds b. about 100 pounds c. 1000 pounds <i>A: b 100 pounds</i>	Researchers at the Institute for Soldier Nanotechnologies want the soldier's uniform to protect the soldier from: a. bullet penetration b. knife penetration c. harmful chemicals d. all of the above A. d all of above
 For alternative energy sources, carbon nanotubes may developed for hydrogen storage in: a. fuel cells that convert hydrogen and oxygen into water and heat b. water that has two hydrogen atoms c. computer memory devices A: a 	What do you call a device that creates topographic maps of the surface of a material by measuring the reflection of light from a deflected cantilever while its a cone-shaped probe at the tip is dragged across the surface? A: Atomic Force Microscope (or AFM)	Conventional microscopes use a series of these to bend light to create a larger image of an object. What do you call the curved pieces of glass that are used to create images? <i>A: Lenses</i>	Conventional microscopes use light to create images. Scanning electron microscopes create higher resolution images by magnifying images using instead of light. A: Electrons	 Nanotechnology has found ways to make coatings: a. resistant to ultraviolet light b. scratch resistant c. heat resistant d. self-cleaning e. all of the above A: e all of the above 	Composites of plastics with carbon nanotubes are difficult to manufacture because the nanotubes don't disperse easily. This is because CNTs: a. tend to break b. tend to break b. tend to bundle c. conduct heat d. all of the above Answer b (tend to bundle)
A device that connects a computer virtual- reality interface to a scanning-probe microscope that allows a human user to see and manipulate individual molecules is called a <i>A: Nanomanipulator</i>	What do you call a device for picking up atoms and molecules that uses Carbon Nanotubes at the end of an atomic force microscope with voltages to open and close the nanotube end? <i>A: Nanotweezers</i>	Useful for forming Carbon Nanotubes, a plasma (ionized gas) is created by making gas conduct electricity by applying a large external voltage. This is called: a. Plasma arcing b. Chemical vapor deposition c. Sol-Gel Process d. Nanoelectrodeposition <i>A: a plasma arcing</i>	Useful for forming Carbon Nanotubes, a material is heated to form a gas then allowed to form a deposit as a solid on a surface. This is called: a. Plasma arcing b. Chemical vapor deposition c. Sol-Gel Process d. Nanoelectrodeposition <i>A: b Chemical vapor</i> <i>deposition</i>	Useful for forming nanoholes in materials, a colloidal liquid is transitioned to a solid. This is called: a. Plasma arcing b. Chemical vapor deposition c. Sol-Gel Process d. Nanoelectrodeposition <i>A: c Sol-Gel Process</i>	Used for making thin films, a single layer of a material is placed on a surface in a very controlled way. This is called: a. Plasma arcing b. Chemical vapor deposition c. Sol-Gel Process d. Nanoelectrodeposition <i>A: d. nanoelectrodeposition</i>
Samsung produces NAND and DRAM flash memory chips using manufacturing methods with precision below 100 nanometers. Which 2005 product uses their 4 GB NAND flash memory? a. Dell Computer b. iPod Nano c. Toshiba Cell Phone <i>A: b iPod Nano</i>	NanoTwin produces a fiberglass tube with a 40 nm layer of TiO2 crystals that radiate UV light oxidizing agents that destroy airborne germs and pollutants at the tube's surface. Used for: a. water purification b. cleaning glass c. air purification d. all of the above A: c	Behr Kitchen & Bath paint uses nanosized additives to lend greater density to the water-based acrylic latex carrier for improved: a. hardness/durable b. water resistance c. mildew resistance d. stain and grease resistance e. all of the above A: e	ArcticShield polyester socks from ARC Outdoors have 19 nanometer silver particles in their fibers to protect against: a. odor and fungus b. shrinking c. staining d. tearing A: a	The spaces between the fibers in standard carbon fiber bats contain only resin, which weakens the bat's power. Easton Sports teamed with Zyvex to create a more responsive bat by filling the spaces with: a. Carbon Nanotubes b. Fullerenes c. Nanoclay platelets d. Quantum Nanodots A. a	Nanowax for skis and snowboards uses self- assembling fluoride polymers and multifunctiontal nanoparticles to create a. less responsive to temperature b. superior adhesive c. excellent gliding d. all of the above A: d